English

If the chord through the points whose eccentric angles are α and β on the ellipse x2a2+y2b2 = 1 passes through the focus (ae, 0), then the value of tan αβα2tan β2 will be ______. -

Advertisements
Advertisements

Question

If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan  β/2` will be ______.

Options

  • `(e + 1)/(e - 1)`

  • `(e - 1)/(e + 1)`

  • `(e + 1)/(e - 2)`

  • `(e - 2)/(e + 1)`

MCQ
Fill in the Blanks

Solution

If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan  β/2` will be `underlinebb((e - 1)/(e + 1))`.

Explanation:

Since the chord passes through focus therefore it is the focal chord of ellipse. Let the coordinates of the endpoints of the focal chord be (acosα, bsinα) and (acosβ. bsinβ). Therefore the equation of the chord is 

`x/acos((α + β)/2) + y/bsin((α + β)/2) = cos((α - β)/2)`

This passes through focus (ae, 0)

∴ `(ae)/a cos ((α + β)/2) = cos((α - β)/2)`

⇒ `(cos((α + β)/2))/(cos((α - β)/2)) = 1/e`

⇒ `(cos((α + β)/2) - cos((α - β)/2))/(cos((α + β)/2) + cos((α - β)/2)) = (1 - e)/(1 + e)`

⇒ `(-2sin  α/2  sin  β/2)/(2cos  α/2  cos  β/2) = (1 - e)/(1 + e)` 

⇒ `-tan  α/2  tan  β/2 = (1 - e)/(1 + e)`

⇒ `tan  α/2  tan  β/2 = (e - 1)/(e + 1)`

shaalaa.com
Conic Sections - Ellipse
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×