English

If the coefficients of x7 and x8 in (2+x3)n are equal, then n is -

Advertisements
Advertisements

Question

If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is

Options

  • 56

  • 55

  • 45

  • 15

MCQ

Solution

55

Explanation:

Since `"T"_(r + 1) = ""^n"C"_r  a^(n - r)  x^r` in expansion of (a + x)n

Therefore, T8 = `""^n"C"_7 (2)^(n - 7)  (x/3)^7 = ""^n"C"_7  (2^(n - 7))/3^7  x^7`

And T9 = `""^n"C"_8  (2)^(n - 8)  (x/3)^8 = ""^n"C"_8  (2^(n - 8))/3^8  x^8`

Therefore, `""^n"C"_7  (2^(n - 7))/3^7 = ""^n"C"_8 (2^(n - 8))/3^8`   ....(Since it is given that coefficient of x7 = coefficient x8)

⇒ `n/((7)(n - 7)) xx (8(n - 8))/n = (2^(n - 8))/3^8 * 3^7/(2^(n - 7))`

⇒ `8/(n - 7) = 1/6`

⇒ n = 55

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×