Advertisements
Advertisements
Question
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.
Options
`(b^n - a^n)/(b - a)`
`(a^n - b^n)/(b - a)`
`(a^(n + 1) - b^(n + 1))/(b - a)`
`(b^(n + 1) - a^(n + 1))/(b - a)`
MCQ
Fill in the Blanks
Solution
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is `underlinebb((b^(n + 1) - a^(n + 1))/(b - a))`.
Explanation:
(1 – ax)–1(1 – bx)–1
= (1 + ax + a2x2 + ...)(1 + bx + b2x2 + ...)
∴ Coefficient of xn
= xn = bn + abn–1 + a2bn–2 + ....... + an–1b + an
which is a G.P. with r = `a/b`
∴ Its sum is = `(b^n[1 - (a/b)^(n + 1)])/(1 - a/b)`
= `(b^(n + 1) - a^(n + 1))/(b - a)`
∴ an = `(b^(n + 1) - a^(n + 1))/(b - a)`
shaalaa.com
Is there an error in this question or solution?