English

If the expansion in powers of x of the function 1(1-ax)(1-bx) is a0 + a1x + a2x2 + a3x3 ....... then an is ______. -

Advertisements
Advertisements

Question

If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.

Options

  • `(b^n - a^n)/(b - a)`

  • `(a^n - b^n)/(b - a)`

  • `(a^(n + 1) - b^(n + 1))/(b - a)`

  • `(b^(n + 1) - a^(n + 1))/(b - a)`

MCQ
Fill in the Blanks

Solution

If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is `underlinebb((b^(n + 1) - a^(n + 1))/(b - a))`.

Explanation:

(1 – ax)–1(1 – bx)–1

= (1 + ax + a2x2 + ...)(1 + bx + b2x2 + ...)

∴ Coefficient of xn

= xn = bn + abn–1 + a2bn–2 + ....... + an–1b + an

which is a G.P. with r = `a/b`

 ∴ Its sum is = `(b^n[1 - (a/b)^(n + 1)])/(1 - a/b)`

= `(b^(n + 1) - a^(n + 1))/(b - a)`

∴ an = `(b^(n + 1) - a^(n + 1))/(b - a)`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×