Advertisements
Advertisements
Question
If the function f defined as f(x) = `1/x - (k - 1)/(e^(2x) - 1)` x ≠ 0, is continuous at x = 0, then the ordered pair (k, f(0)) is equal to ______.
Options
(3, 1)
(3, 2)
`(1/3, 2)`
(2, 1)
Solution
If the function f defined as f(x) = `1/x - (k - 1)/(e^(2x) - 1)` x ≠ 0, is continuous at x = 0, then the ordered pair (k, f(0)) is equal to (3, 1).
Explanation:
If the function is continuous at x = 0, then
`lim_(x rightarrow 0)` f(x) will exist and f(0) = `lim_(x rightarrow 0)` f(x)
Now, `lim_(x rightarrow 0) f(x) = lim_(x rightarrow 0) (1/x - (k - 1)/(e^(2x) - 1))`
= `lim_(x rightarrow 0)((e^(2x) - 1 - kx + x)/((x)(e^(2x) - 1)))`
= `lim_(x rightarrow 0)[((1 + 2x + (2x)^2/(2!) + (2x)^3/(3!) + ...) - 1 - kx + x)/((x)((1 + 2x + (2x)^2/(2!) + (2x)^3/(3!) + ...) - 1))]`
= `lim_(x rightarrow 0)[((3 - k)x + (4x^2)/(2!) + (8x^3)/(3!) + ...)/((2x^2 + (4x^3)/(2!) + (8x^3)/(3!) + ...))]`
For the limit to exist, power of x in the numerator should be greater than or equal to the power of x in the denominator.
Therefore, coefficient of x in the numerator is equal to zero.
`\implies` 3 – k = 0
`\implies` k = 3
So the limit reduces to
`lim_(x rightarrow 0) ((x^2)(4/(2!) + (8x)/(3!) + ...))/((x^2)(2 + (4x)/(2!) + (8x^2)/(3!) + ...)`
= `lim_(x rightarrow 0) (4/(2!) + (8x)/(3!) + ...)/(2 + (4x)/(2!) + (8x^2)/(3!) + ...)` = 1
Hence, f(0) = 1