Advertisements
Advertisements
Question
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
Options
405
406
407
408
Solution
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to 406.
Explanation:
Given, y(x) = `int_0^x(2t^2 - 15t + 10)dt`
Apply Leibnitz theorem
H(x) = `int_(f_2(x))^(f_1(x)) g(t)dt`
H'(x) = `g(f_1(x))f_1^'(x) - g(f_2(x))f_2^'(x)`
Using the Leibnitz theorem, we can write
y'(x) = `(2x^2 - 15x + 10)(d(x))/(dx) - (10)(d(0))/(dx)`
⇒ y'(x) = 2x2 – 15x + 10
y'(x) at point P(a, b)
y'(a) = 2a2 – 15a + 10 ...(i)
Normal is parallel to the line x + 3y = –5,
So slope of normal will be equal to `-1/3`
Let mN = `-1/3`
mr = 3;(mN.mr = –1) ...(ii)
y'(a) = mr
Now using equation (i) and (ii)
2a2 – 15a + 10 = 3
⇒ (a – 7)(2a – 1) = 0
⇒ a = 7, `1/2`
So, a = 7, a = `1/2` rejected because a > 1 ...(iii)
For the value of b: b = y(a)
⇒ b = y(7)
⇒ b = `int_0^7(2t^2 - 15t + 10)dt`
⇒ b = `((2t^3)/3 - (15t^2)/2 + 10t)_0^7`
⇒ b = `(2/3)(7)^3 - 15/2(7)^2 + 10(7) - 0`
⇒ b = `((2)^2(7)^3 - (15)(7)^2(3) + (10)(7)(6))/6`
⇒ 6b = (4 × 343) – (15)(49)(3) + 420
⇒ 6b = 1372 – 2205 + 420
⇒ 6b = 1792 – 2205
⇒ 6b = –413 ...(iv)
Now using equation (iii) and (iv)
|a + 6b| = |7 – 413|
⇒ |a + 6b| = |–406| ∵ |x| = `{(x; x ≥ 0),(-x; x < 0):}`
⇒ |a + 6b| = 406