Advertisements
Advertisements
Question
If the points `P(overlinea+2overlineb+overlinec)`, `Q(2overlinea+3overlineb), R(overlineb+ t overlinec)` are collinear, where `overlinea, overlineb, overlinec` are three non-coplanar vectors, the value of t is ______
Options
-2
`-1/2`
`1/2`
2
Solution
If the points `P(overlinea+2overlineb+overlinec)`, `Q(2overlinea+3overlineb), R(overlineb+ t overlinec)` are collinear, where `overlinea, overlineb, overlinec` are three non-coplanar vectors, the value of t is 2.
Explanation:
Since, the given points
`P(overlinea+2overlineb+overlinec)`, `Q(2overlinea+3overlineb), "and" R(overlineb+ t overlinec)` are collinear.
∴ `overline(PQ) = lambda overline(QR)` for some scalar λ
⇒ `overlinea + overlineb - overlinec = lambda(-2overlinea - 2overlineb + t overlinec)`
⇒ `(2lambda + 1)overlinea + (1 + 2lambda)overlineb - (t lambda + 1) overlinec = overline0`
Since, `veca, vecb ,vecc` are non-coplanar vectors.
∴ `2lambda + 1 = 0, 2lambda + 1 = 0, t lambda + 1 = 0`
⇒ `lambda = -1/2` and `t = -1/lambda`
⇒ t = 2