Advertisements
Advertisements
Question
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.
Options
`2tan^-1(1/k) = log_e(k^2 + 1)`
`tan^-1(1/k) = log_e(k^2 + 1)`
`2tan^-1(1/(k + 1)) = log_e(k^2 + 2k + 2)`
`2tan^-1(1/k) = log_e((k^2 + 1)/k^2)`
Solution
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then `underlinebb(2tan^-1(1/k) = log_e(k^2 + 1))`.
Explanation:
Given differential equations is
`(dy)/(dx) = (x + y - 2)/(x - y) = ((x - 1) + (y - 1))/((x - 1) - (y - 1))`
Put x – 1 = h, y – 1 = k
`(dy)/(dx) = (h + k)/(h - k); k = Vh (dk)/(dh) = V + h(dV)/(dh)`
`V + X(dV)/(dh) = (1 + V)/(1 - V) h(dV)/(dh) = (V^2 + 1)/(1 - V)`
`int(1 - V)/(1 + V^2) dV = int (dh)/h; int(dV)/(1 + V^2) - 1/2 int(2VdV)/(1 + V^2) = int (dh)/h`
`tan^-1V - 1/2 ln(1 + V^2)` = ln h + c
`tan^-1(k/h) - 1/2 ln(1 + k^2/h^2)` = ln h + c
Replace h and k by (x – 1) and (y – 1) respectively
`tan^-1((y - 1)/(x - 1)) - 1/2 ln (1 + (y - 1)^2/(x - 1)^2)` = ln(x – 1) + c
Satisfy (2, 1).
`0 - 1/2 ln 1` = ln 1 + c
∴ c = 0
Satisfy (k + 1, 2)
Therefore, `tan^-1(1/k) - 1/2 ln (1 + 1/k^2)` = ln k
`2tan^-1(1/k) = ln ((1 + k^2)/k^2) + 2 ln k`
`2tan^-1(1/k)` = ln (1 + k2)