Advertisements
Advertisements
Question
If the standard deviation of the random variable X is `sqrt(3"pq")` and mean is 3p then E(x2) = _______.
Options
3pq + 3q2
3p(1 + 2p)
3pq + 3p2
3q(1 + 2q)
MCQ
Fill in the Blanks
Solution
If the standard deviation of the random variable X is `sqrt(3"pq")` and mean is 3p then E(x2) = 3p(1 + 2p).
Explanation:
We have standard deviation of X = `sqrt(3"pq")`
⇒ Var(X) = 3pq
and mean, E(X) = 3p
Now, 3pq = E(x2) - (3p2) ....(∵ Var(X) = E(X2) - (E(X)2))
⇒ E(X2) = 3pq + 9p2
= 3p(1 - p) + 9p2 ...(∵ p + q = 1)
= 3p - 3p2 + 9p2
⇒ 3p + 6p2
⇒ 3p (1 + 2p)
shaalaa.com
Mean of Binomial Distribution (P.M.F.)
Is there an error in this question or solution?