Advertisements
Advertisements
Question
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Sum
Solution
Let `intv dx` = w
`\implies` v = `(dw)/dx` ...(i)
Consider, `d/dx(u*w) = u*d/dxw + w*d/dx u`
= `u*v + w*(du)/dx` ...[From (i)]
By definition of integration
u.w. = `int[uv + w(du)/dx]dx`
= `intuv dx + int(du)/dx*w dx`
∴ `u*intv dx = intuv dx + int[(du)/dx intvdx]dx` ...[From (i)]
∴ `intuv dx = uintv dx - int((du)/dx)(intv dx)dx`
Now, I = `intx cos x dx`,
Here u = x,
v = cos x
∴ I = `x int cosx dx - int(d/dx x)(intcosx dx)dx`
= `xsinx - int(1) sinx dx`
= x sin x + cos x + c
shaalaa.com
Is there an error in this question or solution?