Advertisements
Advertisements
Question
If u= `sin^-1 ((x+y)/(sqrtx+sqrty)), " prove that ""`i.xu_x+yu_y=1/2 tanu`
ii. `x^2uxx+2xyu_xy+y^2u_(y y)=(-sinu.cos2u)/(4cos^3u)`
Solution
`u= sin^1(x+y/(sqrtx+sqrty))`
Put x = xt and y = yt to find degree.
∴ `u=sin_1((xt-yt)/(sqrt(xt)+sqrt(yt)))`
∴ `sin u= t^(1/2).(x+y)/(sqrtx+sqrty)=t^(1/2). f(x,y)`
The function sin u is homogeneous with degree ½.
But sin u is the function of u and u is the function of x and y.
By Euler’s theorem ,
`xu_x+yu_y=G(u)=n. f(u)/(f,(u))=1/2 tanu`
∴` xu_x+yu_y= 1/2 tanu`
∴` x^2u_(x x)+2xyu_(y y)+y^2u_(yy)=G(u)[G'(u)-1]`
=`1/2 tanu[(sec^2u-2)/2]`
=` 1/4 tan u [(tan^2u-1)/1]`
=`1/4xx sin u /cos u[(sin^2 u-cos^2 u)/(cos^2u)]`
∴` x^2u_(x x)+2xyu_(x y)+y^2u_(y y)= -(sinu.cos2u)/(4cos^3u)`
Hence Proved.