Advertisements
Advertisements
Question
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
Options
12
32
36
10
MCQ
Fill in the Blanks
Solution
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = 10
Explanation:
Here, `dx/(ds) = 1`, `dy/(ds) = 2` .............(i)
and `(d^2x)/(ds^2) = 0, (d^2y)/(ds^2) = 0` .............(ii)
Now, u = x2 + y2
∴ `(du)/(ds) = 2x . dx/(ds) + 2y. dy/(ds)`
∴ `(d^2u)/(ds^2) = 2(dx/(ds))^2 + 2x((d^2x)/(ds^2)) + 2(dy/(ds))^2 + 2y((d^2y)/(ds^2))`
From (i) and (ii), we get
`(d^2u)/(ds^2) = 2(1) + 0 + 2(4) + 0 = 10`
shaalaa.com
Is there an error in this question or solution?