Advertisements
Advertisements
Question
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.
Options
2 sin n θ
2 cos n θ
sin (2n θ)
cos (2n θ)
MCQ
Fill in the Blanks
Solution
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to 2 cos n θ.
Explanation:
Given, `x + 1/x` = 2 cos θ
`x^2 + 1/x^2 = (x + 1/x)^2 - 2` = 4 cos2θ – 2
`\implies x^2 + 1/x^2` = 2 cos 2 θ
Again, `x^3 + 1/x^3 + 3(x + 1/x)` = 8 cos3 θ
`\implies x^3 + 1/x^3` = 8 cos3 θ – 6 cos θ
= 2 cos 3 θ
Similalry, `x^n + 1/x^n` = 2 cos n θ
shaalaa.com
Trigonometric Functions of Triple Angle
Is there an error in this question or solution?