Advertisements
Advertisements
Question
If x = 6a + 8b + 9c ; y = 2b – 3a – 6c and z = c – b + 3a ; find :
- x + y + z
- x – y + z
- 2x – y – 3z
- 3y – 2z – 5x
Solution
(i) x = 6a + 8b + 9c
y = − 3a + 2b − 6c
z = +3a − b + c
Adding x + y + z = 6a + 9b + 4c
(ii) x − y + z = (6a + 8b + 9c) − (2b − 3a − 6c) + (c − b + 3a)
= 6a + 8b + 9c − 2b + 3a + 6c + c − b + 3a
= 6a + 3a + 3a + 8b − 2b − b + 9c + 6c + c
= 12a + 5b + 16c
(iii) 2x − y − 3z = 2(6a + 8b + 9c) − (2b − 3a − 6c) − 3(c −b + 3a)
= 12a + 16b + 18c − 2b + 3a + 6c − 3c +3b − 9a
= 12a + 3a − 9a + 16b + 3b − 2b + 18c + 6c −3c
= 6a + 17b + 21c
(iv) 3y − 2z − 5x = 3(2b − 3a − 6c) − 2(c − b + 3a) − 5(6a + 8b + 9c)
= 6b − 9a − 18c − 2c + 2b − 6a − 30a − 40b − 45c
= − 9a − 6a − 30a + 6b + 2b − 40b − 18c − 2c − 45c
= − 45a − 32b − 65c
APPEARS IN
RELATED QUESTIONS
Evaluate :
abx − 15abx − 10abx + 32abx
Add : 3b − 7c + 10, 5c − 2b − 15, 15 + 12c + b
Add : x3 − x2y + 5xy2 + y3, - x3 − 9xy2 + y3, 3x2y + 9xy2
Subtract : 3a − 5b + c + 2d from 7a − 3b + c − 2d
Subtract : a2 + ab + b2 from 4a2 − 3ab + 2b2
What must be added to x4 – x3 + x2 + x + 3 to obtain x4 + x2 – 1 ?
How much more than 2x2 + 4xy + 2y2 is 5x2 + 10xy – y2 ?
How much less 2a2 + 1 is than 3a2 – 6 ?
The sides of a triangle are x2 – 3xy + 8, 4x2 + 5xy – 3 and 6 – 3x2 + 4xy. Find its perimeter.
The two adjacent sides of a rectangle are 2x2 – 5xy + 3z2 and 4xy – x2 – z2. Find its perimeter.