Advertisements
Advertisements
Question
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Options
-1
`1/2`
`-1/2`
1
MCQ
Fill in the Blanks
Solution
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = 1
Explanation:
Let I = `intsqrt((x - 7)/(x - 9)) dx`
= `intsqrt((x - 7)/((x - 9)(x - 7)))dx`
= `int(x - 7)/sqrt(x^2 - 16x + 63)dx`
= `1/2int(2x - 14)/(x^2 - 16x + 63)dx`
= `1/2int(2x - 16 + 2)/sqrt(x^2 - 16x + 63)dx`
= `1/2int(2x - 16)/sqrt(x^2 - 16x + 63) + 2/2intdx/sqrt(x^2 - 16x + 64 - 1)`
= `1/2 xx 2sqrt(x^2 - 16x + 63) + int dx/sqrt((x - 8)^2 - 1)`
= `sqrt(x^2 - 16x + 63) + log|(x - 8) + sqrt(x^2 - 16x + 63)| + c`
Comparing with `Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, we get
A = 1
shaalaa.com
Is there an error in this question or solution?