Advertisements
Advertisements
Question
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.
Options
cosθ
sinθ
tanθ
cosecθ
MCQ
Fill in the Blanks
Solution
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = tanθ.
Explanation:
`(dy)/(dx) = (acosθ)/(-asinθ + (asec^2 θ/2)/(tan θ/2) xx 1/2)`
= `(acosθ)/(-asinθ + a/(2cos θ/2 sin θ/2)`
= `(acosθ)/(a/sinθ - asinθ)`
= `(acosθsinθ)/(a - asin^2θ)`
= `(cosθsinθ)/(cos^2θ)`
= tanθ
shaalaa.com
Is there an error in this question or solution?