Advertisements
Advertisements
Question
If x = a cos3θ, y = a sin3θ, then `1 + (("d"y)/("d"x))^2` is ______.
Options
sec3θ
tan θ
1
tan2θ
MCQ
Fill in the Blanks
Solution
If x = a cos3θ, y = a sin3θ, then `1 + (("d"y)/("d"x))^2` is sec3θ.
Explanation:
x = a cos3θ and y = a sin3θ
∴ `("d"x)/("d"theta) = - 3"a"cos^2theta.sin theta`
and `("d"y)/("d"theta)` = 3a sin2θ.cos θ
∴ `("d"y)/("d"theta) = - tantheta`
∴ `1 + (("d"y)/("d"x))^2 = 1 + tan^2theta` = sec3θ
shaalaa.com
Geometrical Meaning of Derivative
Is there an error in this question or solution?