English

If x = a cos3θ, y = a sin3θ, then dd1+(dydx)2 is ______. -

Advertisements
Advertisements

Question

If x = a cos3θ, y = a sin3θ, then `1 + (("d"y)/("d"x))^2` is ______.

Options

  • sec3θ

  • tan θ

  • 1

  • tan2θ

MCQ
Fill in the Blanks

Solution

If x = a cos3θ, y = a sin3θ, then `1 + (("d"y)/("d"x))^2` is sec3θ.

Explanation:

x = a cos3θ and y = a sin3θ

∴ `("d"x)/("d"theta) = - 3"a"cos^2theta.sin theta`

and `("d"y)/("d"theta)` = 3a sin2θ.cos θ

∴ `("d"y)/("d"theta) = - tantheta`

∴ `1 + (("d"y)/("d"x))^2 = 1 + tan^2theta` = sec3θ

shaalaa.com
Geometrical Meaning of Derivative
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×