Advertisements
Advertisements
Question
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
Options
`0, - (a + beta + y)`
`0, (a + beta + y)`
`1, - (a + beta + y)`
`0, (a^2 + beta^2 + y^2)`
MCQ
Solution
`0, - (a + beta + y)`
Explanation:
Applying C1 `->` C1 + C2 + C3
⇒ `(x + a + beta + y) |(1, beta, y),(1, x + beta, y),(1, beta, x + y)|` = 0
⇒ `(x + a + beta + y) . x^2` = 0
⇒ `x = 0, - (a, beta + y)`
shaalaa.com
Is there an error in this question or solution?