English

If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then dydx at θ = ππ4 is ______. -

Advertisements
Advertisements

Question

If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.

Options

  • 1

  • 0

  • `1/sqrt(2)`

  • `sqrt(2)`

MCQ
Fill in the Blanks

Solution

If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is 1.

Explanation:

x = eθ (sin θ – cos θ) and y = eθ (sin θ + cos θ)

∴ `dx/(dθ)` = eθ (cos θ + sin θ) + (sin θ – cos θ) eθ

= eθ [2 sin θ]

and `dy/dx` = eθ (cos θ – sin θ) + (sin θ + cos θ) eθ

= eθ [2 cos θ]

∴ `dy/dx = (dy//dθ)/(dx//dθ) = (e^θ[2 cos θ])/(e^θ[2 cos θ])`

`\implies dy/dx` = cot θ

`\implies dy/dx |_(θ = π/4) = cot  π/4` = 1

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×