Advertisements
Advertisements
Question
If x ∈ I, then the solution set of the inequation 1 < 3x + 5 ≤ 11 is
Options
{ – 1, 0, 1, 2}
{ – 2, – 1, 0, 1}
{ – 1, 0, 1}
`{x : x ∈ "R", -(4)/(3) < x ≤ 2}`
Solution
x ∈ I
1 < 3x + 5 ≤ 11
⇒ 1 < 3x + 5
⇒ 1 – 5 < 3x
⇒ –4 < 3x
⇒ `(-4)/(3) < x`
and
3 + 5 ≤ 11
⇒ 3x ≤ 11 – 5
⇒ 3x ≤ 6
⇒ `x ≤ (6)/(3)`
⇒ x ≤ 2
∴ `(-4)/(3) < x ≤ 2`
Solution set = {–1, 0, 1, 2}.
APPEARS IN
RELATED QUESTIONS
If P = { x : -3 < x ≤ 7, x ∈ R} and Q = { x : - 7 ≤ x < 3, x ∈ R} , represent the following solution set on the different number lines :
P ∩ Q
If P = { x : -3 < x ≤ 7, x ∈ R} and Q = { x : - 7 ≤ x < 3, x ∈ R} , represent the following solution set on the different number lines:
Q' ∩ P
If P = {x : 7x - 2 > 4x + 1, x ∈ R} and Q = {x : 9x - 45 ≥ 5 (x -5),x ∈ R} , represent the following solution set on different number lines:
P - Q
If P = {x : 7x - 4 > 5x + 2, x ∈ R} and Q - {x : x - 19 ≥ 1 - 3x, x ∈ R}, represent the following solution set on different number lines:
P ∩ Q
Solve: `(2x - 3)/(4) ≥ (1)/(2)`, x ∈ {0, 1, 2,…,8}
Given x ∈ {1, 2, 3, 4, 5, 6, 7, 9} solve x – 3 < 2x – 1.
List the solution set of the inequation `(1)/(2) + 8x > 5x -(3)/(2)`, x ∈ Z
If x ∈ I, A is the solution set of 2 (x – 1) < 3 x – 1 and B is the solution set of 4x – 3 ≤ 8 + x, find A ∩ B.
If x∈R, solve `2x - 3 ≥ x + (1 - x)/(3) > (2)/(5)x`
Given, `x + 2 ≤ x/3 + 3` and x is a prime number. The solution set for x is ______.