English

If x = ∑n=0∞an, y = ∑n=0∞bn, z = ∑n=0∞cn where a, b , c are in A.P. and |a| < 1, |b| < 1, |c| < 1 then x, y, z are in ______. -

Advertisements
Advertisements

Question

If x = `sum_(n = 0)^∞a^n`, y = `sum_(n = 0)^∞b^n`, z = `sum_(n = 0)^∞c^n` where a, b , c are in A.P. and |a| < 1, |b| < 1, |c| < 1 then x, y, z are in ______.

Options

  • G.P.

  • A.P.

  • Arithmetic - Geometric Progression

  • H.P.

MCQ
Fill in the Blanks

Solution

If x = `sum_(n = 0)^∞a^n`, y = `sum_(n = 0)^∞b^n`, z = `sum_(n = 0)^∞c^n` where a, b , c are in A.P. and |a| < 1, |b| < 1, |c| < 1 then x, y, z are in H.P..

Explanation:

x = `sum_(n = 0)^∞a^n = 1/(1 - a)`

⇒ a = `1 - 1/x`

y = `sum_(n = 0)^∞b^n = 1/(1 - b)`

⇒ b = `1 - 1/y`

z = `sum_(n = 0)^∞c^n = 1/(1 - c)`

⇒ c = `1 - 1/z`

a, b, c are in A.P.

⇒ 2b = a + c

`2(1 - 1/y) = 1 - 1/x + 1 - 1/z`

`2/y = 1/x + 1/z`

⇒ x, y, z are in H.P.

shaalaa.com
Harmonic Progression (H. P.)
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×