Advertisements
Advertisements
Question
If x = `sum_(n = 0)^∞a^n`, y = `sum_(n = 0)^∞b^n`, z = `sum_(n = 0)^∞c^n` where a, b , c are in A.P. and |a| < 1, |b| < 1, |c| < 1 then x, y, z are in ______.
Options
G.P.
A.P.
Arithmetic - Geometric Progression
H.P.
MCQ
Fill in the Blanks
Solution
If x = `sum_(n = 0)^∞a^n`, y = `sum_(n = 0)^∞b^n`, z = `sum_(n = 0)^∞c^n` where a, b , c are in A.P. and |a| < 1, |b| < 1, |c| < 1 then x, y, z are in H.P..
Explanation:
x = `sum_(n = 0)^∞a^n = 1/(1 - a)`
⇒ a = `1 - 1/x`
y = `sum_(n = 0)^∞b^n = 1/(1 - b)`
⇒ b = `1 - 1/y`
z = `sum_(n = 0)^∞c^n = 1/(1 - c)`
⇒ c = `1 - 1/z`
a, b, c are in A.P.
⇒ 2b = a + c
`2(1 - 1/y) = 1 - 1/x + 1 - 1/z`
`2/y = 1/x + 1/z`
⇒ x, y, z are in H.P.
shaalaa.com
Harmonic Progression (H. P.)
Is there an error in this question or solution?