English

If x = sin θ, y = sin3 θ then dydxatd2ydx2 atθ=π2 is ______. -

Advertisements
Advertisements

Question

If x = sin θ, y = sin3 θ then `("d"^2"y")/"dx"^2  "at" theta = pi/2` is ______.

Options

  • 3

  • 6

  • `1/6`

  • `1/3`

MCQ
Fill in the Blanks

Solution

If x = sin θ, y = sin3 θ then `("d"^2"y")/"dx"^2  "at" theta = pi/2` is 6.

Explanation:

We have, x = sin θ, y = sin3 θ

`therefore "dy"/"dx" = ("dy"/("d"theta))/("dx"/("d"theta))`

`= (3 sin^2 theta (cos theta))/(cos theta)`

`=> "dy"/"dx" = 3 sin^2 theta`

Now, `("d"^2"y")/"dx"^2 = 3(2 sin theta cos theta) ("d"theta)/"dx"`

= 3 (2 sin θ cos θ)`1/(cos theta) = 6 sin theta`

at `theta = pi/2, ("d"^2"y")/"dx"^2 = 6 sin (pi/2) = 6 xx 1 = 6`

shaalaa.com
Higher Order Derivatives
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×