Advertisements
Advertisements
Question
If x = sin θ, y = sin3 θ then `("d"^2"y")/"dx"^2 "at" theta = pi/2` is ______.
Options
3
6
`1/6`
`1/3`
MCQ
Fill in the Blanks
Solution
If x = sin θ, y = sin3 θ then `("d"^2"y")/"dx"^2 "at" theta = pi/2` is 6.
Explanation:
We have, x = sin θ, y = sin3 θ
`therefore "dy"/"dx" = ("dy"/("d"theta))/("dx"/("d"theta))`
`= (3 sin^2 theta (cos theta))/(cos theta)`
`=> "dy"/"dx" = 3 sin^2 theta`
Now, `("d"^2"y")/"dx"^2 = 3(2 sin theta cos theta) ("d"theta)/"dx"`
= 3 (2 sin θ cos θ)`1/(cos theta) = 6 sin theta`
at `theta = pi/2, ("d"^2"y")/"dx"^2 = 6 sin (pi/2) = 6 xx 1 = 6`
shaalaa.com
Higher Order Derivatives
Is there an error in this question or solution?