Advertisements
Advertisements
Question
If x + y + k = 0 touches the circle x2 + y2 - 2x - 4y + 3 = 0, then k will be ______
Options
-1, 5
1, -5
1, 5
-1, -5
MCQ
Fill in the Blanks
Solution
If x + y + k = 0 touches the circle x2 + y2 - 2x - 4y + 3 = 0, then k will be -1, -5.
Explanation:
Comparing the given equation with
x2 + y2 + 2gx + 2fy + c = 0, we get
g = -1, f = -2, c = 3
∴ Centre = (1, 2), Radius = `sqrt(1 + 4 - 3) = sqrt2`
Since x + y + k = 0 touches the given circle,
`|(1 + 2 + k)/sqrt(1 + 1)|` = radius
⇒ `(3 + k)/sqrt2 = ±sqrt2`
⇒ k = -1 or k = -5
shaalaa.com
Is there an error in this question or solution?