English

If x + y + k = 0 touches the circle x2 + y2 - 2x - 4y + 3 = 0, then k will be ______ -

Advertisements
Advertisements

Question

If x + y + k = 0 touches the circle x2 + y2 - 2x - 4y + 3 = 0, then k will be ______

Options

  • -1, 5

  • 1, -5

  • 1, 5

  • -1, -5

MCQ
Fill in the Blanks

Solution

If x + y + k = 0 touches the circle x2 + y2 - 2x - 4y + 3 = 0, then k will be -1, -5.

Explanation:

Comparing the given equation with

x2 + y2 + 2gx + 2fy + c = 0, we get

g = -1, f = -2, c = 3

∴ Centre = (1, 2), Radius = `sqrt(1 + 4 - 3) = sqrt2`

 

Since x + y + k = 0 touches the given circle,

`|(1 + 2  + k)/sqrt(1 + 1)|` = radius

⇒ `(3 + k)/sqrt2 = ±sqrt2`

⇒ k = -1 or k = -5

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×