Advertisements
Advertisements
Question
If (x2 + y2)2 = xy, then `dy/dx` is ______.
Options
`(y + 4x(x^2 + y^2))/(4y(x^2 + y^2) - x)`
`(y - 4x(x^2 + y^2))/(x + 4(x^2 + y^2))`
`(y - 4x(x^2 + y^2))/(4y(x^2 + y^2) - x)`
`(4y(x^2 + y^2) - x)/(y - 4x(x^2 + y^2))`
MCQ
Fill in the Blanks
Solution
If (x2 + y2)2 = xy, then `dy/dx` is `underlinebb((y - 4x(x^2 + y^2))/(4y(x^2 + y^2) - x))`.
Explanation:
Given, (x2 + y2)2 = xy
`\implies` x4 + 2x2y2 + y4 – xy = 0
Differentiating w.r.t. x, we get
`4x^3 + 2[2xy^2 + x^2 . 2y dy/dx] + 4y^3 dy/dx - [y + x dy/dx] = 0`
`dy/dx [4x^2y + 4y^3 - x] + [4x^3 + 4xy^2 - y] = 0`
`dy/dx = (-[4x^3 + 4xy^2 - y])/([4x^2y + 4y^3 - x])`
or `dy/dx = (y - 4x(x^2 + y^2))/(4y(x^2 + y^2) - x)`
shaalaa.com
Is there an error in this question or solution?