English

If (x2 + y2)2 = xy, then dydx is ______. - Mathematics

Advertisements
Advertisements

Question

If (x2 + y2)2 = xy, then `dy/dx` is ______.

Options

  • `(y + 4x(x^2 + y^2))/(4y(x^2 + y^2) - x)`

  • `(y - 4x(x^2 + y^2))/(x + 4(x^2 + y^2))`

  • `(y - 4x(x^2 + y^2))/(4y(x^2 + y^2) - x)`

  • `(4y(x^2 + y^2) - x)/(y - 4x(x^2 + y^2))`

MCQ
Fill in the Blanks

Solution

If (x2 + y2)2 = xy, then `dy/dx` is `underlinebb((y - 4x(x^2 + y^2))/(4y(x^2 + y^2) - x))`.

Explanation:

Given, (x2 + y2)2 = xy

`\implies` x4 + 2x2y2 + y4 – xy = 0

Differentiating w.r.t. x, we get

`4x^3 + 2[2xy^2 + x^2 . 2y dy/dx] + 4y^3 dy/dx - [y + x dy/dx] = 0`

`dy/dx [4x^2y + 4y^3 - x] + [4x^3 + 4xy^2 - y] = 0`

`dy/dx = (-[4x^3 + 4xy^2 - y])/([4x^2y + 4y^3 - x])`

or `dy/dx = (y - 4x(x^2 + y^2))/(4y(x^2 + y^2) - x)`

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (December) Term 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×