Advertisements
Advertisements
Question
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
Options
– 34
– 32
– 2
4
Solution
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is – 34.
Explanation:
Given, x2 + y2 + sin y = 4
After differentiating the above equation w. r. t. x we get
`2x + 2y (dy)/(dx) + cosy (dy)/(dx)` = 0 ...(i)
`\implies 2x + (2y + cosy) (dy)/(dx)` = 0
`\implies (dy)/(dx) = (-2x)/(2y + cosy)`
At `(-2, 0)(dy/dx)_((-2"," 0)) = (-2 xx -2)/(2 xx 0 + cos0)`
`\implies (dy/dx)_((-2"," 0)) = 4/(0 + 1)`
`\implies (dy/dx)_((-2"," 0))` = 4 ...(ii)
Again differentiating equation (i) w. r. t to x, we get
`2 + 2(dy/dx)^2 + 2y(d^2y)/(dx^2) - siny(dy/dx)^2 + cosy (d^2y)/(dx^2)` = 0
`\implies 2 + (2 - siny)(dy/dx)^2 + (2y + cosy)(d^2y)/(dx^2)` = 0
`\implies (2y + cosy) (d^2y)/(dx^2) = -2 - (2 - sin y)(dy/dx)^2`
`\implies (d^2y)/(dx^2) = (-2 - (2 - siny)(dy/dx)^2)/(2y + cosy)`
So, at (–2, 0),
`(d^2y)/(dx^2) = (-2 - (2 - 0) xx 4^2)/(2 xx 0 + 1)`
`\implies (d^2y)/(dx^2) = (-2 - 2 xx 16)/1`
`\implies (d^2y)/(dx^2)` = – 34