Advertisements
Advertisements
Question
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
Options
3
4
1
2
Solution
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to 3.
Explanation:
Let y = `(1 + 1/x)^x`
Taking logarithm of both sides, we get
log y = `x[log (1 + 1/x)]`
`\implies 1/y y_1(x) = x^2/(x + 1)(-1/x^2) + log(1 + 1/x)`
= `-1/(x + 1) + log(1 + 1/x)` .........(i)
Since, y (2) = `(1 + 1/2)^2 = 9/4`
So, y1 (2) = `(9/4)(-1/3 + log 3/2)`
Again differentiate equation (i) w.r.t (x), we get
`(y(x)y_2(x) - [y_1(x)]^2)/(y(x))^2 = 1/(1 + x)^2 - 1/(x(x + 1))`
By putting x = 2, we get
`(y(2)y_2(2) - (y_1(2))^2)/(y(2))^2 = (-1)/8`
Now, put value of y(2) and y1(2)
`\implies` y2 (2) = `(9/4)(-1/3 + log 3/2)^2 - 1/8`
`(y_2(2) + 1/8)^4 = 9(log 3/2 - 1/3)^2`
`\implies` Required expression = 3