Advertisements
Advertisements
Question
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
Options
0
1
–1
2
MCQ
Fill in the Blanks
Solution
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = 0.
Explanation:
y = `sqrt((1 - x)/(1 + x))`
∴ log y = `1/2[log(1 - x) - log(1 + x)]`
∴ `1/y dy/dx = 1/2[(-1)/(1 - x) - 1/(1 + x)]`
∴ `1/y dy/dx = 1/2[(-1 - x - 1 + x)/((1 - x)(1 + x))]`
∴ `1/y dy/dx = 1/2[(-2)/(1 - x^2)]`
∴ `(1 - x^2)dy/dx` = – y
∴ `(1 - x^2)dy/dx + y` = 0
shaalaa.com
Is there an error in this question or solution?