Advertisements
Advertisements
Question
If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = ______.
Options
`(-1)/(2sqrt(1 - x^4)`
`1/(2sqrt(1 - x^4)`
`(-x)/sqrt(1 - x^4)`
`x/sqrt(1 - x^4)`
MCQ
Fill in the Blanks
Solution
If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = `underlinebb((-x)/sqrt(1 - x^4))`.
Explanation:
y = `cos^-1 sqrt((1 + x^2)/2`
Put x2 = cos 2θ,
∴ θ = `1/2 cos^-1x^2`
Now y = `cos^-1 sqrt((1 + cos2θ)/2`
= `cos^-1 sqrt(cos^2θ)`
∴ y = cos–1 cos θ
= θ
= `1/2 cos^-1x^2`
∴ `dy/dx = (-1(2x))/(2sqrt(1 - x^4))`
= `(-x)/sqrt(1 - x^4)`
shaalaa.com
Derivatives of Inverse Functions
Is there an error in this question or solution?