Advertisements
Advertisements
Question
If y = sin-1 `[(sqrt(1 + x) + sqrt(1 - x))/2]`, then `"dy"/"dx"` = ?
Options
`(1/4) 1/(sqrt(x^2 - 1))`
`(-1/2) 1/(sqrt(x^2 - 1))`
`(-1/2) 1/(sqrt(1 - x^2))`
`(1/4) 1/(sqrt(1 - x^2))`
MCQ
Solution
`(-1/2) 1/(sqrt(1 - x^2))`
Explanation:
We have, y = sin-1`[(sqrt(1 + x) + sqrt(1 - x))/2]`
Put, x = cos θ
∴ `"y" = sin^-1 [(sqrt(1 + cos 2 theta) + sqrt(1 - cos 2 theta))/2]`
`"y" = sin^-1 ((cos theta + sin theta)/sqrt2)`
`"y" = sin^-1 (sin (pi/4 + theta))`
y = `pi/4 + theta`
y = `pi/4 + 1/2 cos^-1 x`
`"dy"/"dx" = (- 1)/(2 sqrt(1 - x^2))`
shaalaa.com
Trigonometric Equations and Their Solutions
Is there an error in this question or solution?