Advertisements
Advertisements
Question
If y = sin (msin–1x), then which one of the following equations is true?
Options
`(1 - x^2) (d^2y)/(dx^2) + x dy/dx + m^2y = 0`
`(1 - x^2) (d^2y)/(dx^2) - x dy/dx + m^2y = 0`
`(1 + x^2) (d^2y)/(dx^2) - x dy/dx - m^2y = 0`
`(1 + x^2) (d^2y)/(dx^2) + x dy/dx - m^2x = 0`
Solution
`bb((1 - x^2) (d^2y)/(dx^2) - x dy/dx + m^2y = 0)`
Explanation:
Given, y = sin (m(sin–1x)) ...(i)
Differentiating both sides w.r.t. x, we get
`dy/dx = cos(msin^-1x) xx m/sqrt(1 - x^2)`
`\implies dy/dx = (mcos(msin^-1x))/sqrt(1 - x^2)` ...(ii)
`\implies y^' = (mcos(msin^-1x))/sqrt(1 - x^2)` ...(ii)
`\implies (sqrt(1 - x^2))y^' = mcos(msin^-1x)`
Differentiating again w.r.t. 'x', we get
`y^('')(sqrt(1 - x^2)) + y^'((-2x))/(2sqrt(1 - x^2)) = -m^2sin(msin^-1x) 1/sqrt(1 - x^2)`
`\implies` y"(1 – x2) – xy' = – m2y
`\implies` y"(1 – x2) – xy' + m2y = 0
or `(1 - x^2) (d^2y)/(dx^2) - x dy/dx + m^2y = 0`