Advertisements
Advertisements
Question
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
Options
`x^2/sqrt(1 - x^4)`
`x^2/sqrt(1 + x^4)`
`x/sqrt(1 + x^4)`
`x/sqrt(1 - x^4)`
Solution
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to `underlinebb(x/sqrt(1 - x^4))`.
Explanation:
Given, y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`
Put x2 = cos 2θ in the given equation,
∴ y = `tan^-1 (sqrt(1 + cos 2θ) - sqrt(1 - cos 2θ))/(sqrt(1 + cos 2θ) + sqrt(1 - cos 2θ))`
= `tan^-1 (cos θ - sin θ)/(cos θ + sin θ)`
= `tan^-1 (cosθ/cosθ - sinθ/cosθ)/(cosθ/cosθ + sinθ/cosθ)`
= `tan^-1 ((1 - tanθ))/((1 + tanθ))`
= `tan^-1 {tan(π/4 - θ)}`
`\implies` y = `π/4 - θ = π/4 - 1/2 cos^-1x^2`
`\implies dy/dx = 0 - 1/2((-2x)/sqrt(1 - x^4)) = x/sqrt(1 - x^4)`