Advertisements
Advertisements
Question
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
Options
`6/(1 + (6 + 7x)^2`
`7/(1 + (6 + 7x)^2`
`1/(1 + x^2)`
`6/(1 + x^2)`
MCQ
Fill in the Blanks
Solution
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = `underlinebb(1/(1 + x^2))`.
Explanation:
y = `tan^-1((6x - 7)/(6 + 7x))`
By dividing numerator and denominator by 6 we get
∴ y = `tan^-1((x - 7/6)/(1 + (7x)/6))`
∴ y = `tan^-1x - tan^-1 7/6` ...`[∵ tan^-1((a - b)/(1 + ab)) = tan^-1a - tan^-1b]`
∴ `dy/dx = 1/(1 + x^2) - 0 = 1/(1 + x^2)`
shaalaa.com
Is there an error in this question or solution?