Advertisements
Advertisements
Question
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
Options
`b/(2a^2)`
`b/a^2`
`(2b)/a`
`b^2/(2a)`
Solution
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = `underline(b/a^2)`.
Explanation:
y = `2/(sqrt(a^2 - b^2))tan^-1(sqrt((a - b)/(a + b)) tan x/2)`
∴ `dy/dx = 2/sqrt(a^2 - b^2) 1/(1 + ((a - b)/(a + b))tan^2 x/2) xx sqrt((a - b)/(a + b)) sec^2 x/2(1/2)`
= `1/(a + b) xx (sec^2 x/2)/(1 + ((a - b)/(a + b)) tan^2 x/2)`
⇒ `dy/dx = (sec^2 x/2)/((a + b)(a - b)tan^2 x/2)`
`[(a + b) + (a - b)tan^2 x/2](sec x/2 sec x/2 tan x/2)`
∴ `(d^2y)/(dx^2) = (-sec^2 x/2[(a - b) tan x/2 sec^2 x/2])/[[(a + b) + (a - b) tan^2 x/2]`
(a + b + a - b)`(sqrt2 xx sqrt2 xx 1)`
`((d^2y)/dx^2)_{(x = pi/2)} = (-(sqrt2)^2[(a - b)(sqrt2)^2])/(a + b + a - b)^2`
= `(4a - 4(a - b))/(4a^2)`
= `(4b)/(4a^2) = b/a^2`