Advertisements
Advertisements
Question
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
Options
n2y
– n2y
– y
2x2y
Solution
n2y
Explanation:
`y = (x + sqrt(1 + x^2))^n`
Differentiate w.r.t.x
`(dy)/(dx) = n(x + sqrt(1 + x^2))^(n-1) [(1 + 1)/(2sqrt(1 + x^2) × 2x)]`
= `n(x + sqrt(1 + x^2))^(n-1) [(1 + x)/sqrt(1 + x^2)]`
= `n(x + sqrt(1 + x^2))^(n-1) [(sqrt(1 + x^2) + x)/sqrt(1 + x^2)]`
= `(n(x + sqrt(1 + x^2))^n)/sqrt(1 + x^2)`
= `(ny)/sqrt(1 + x^2)`
`sqrt(1 + x^2) (dy)/(dx)` = ny ......(i)
Differentiate again w.r.t.x
`[(2x)/2sqrt(1 + x^2)] × (dy)/(dx) + sqrt(1 + x^2) (d^2y)/(dx^2) = n (dy)/(dx) [x/sqrt(1 + x^2)] xx (dy)/(dx) + sqrt(1 + x^2) (d^2y)/(dx^2) = n (dy)/(dx)`
Multiply by `sqrt(1 + x^2)`
`[x xx (dy)/(dx) + (1 + x^2) (d^2y)/(dx^2)] = n ((dy)/(dx)) sqrt(1 + x^2) [x xx (dy)/(dx) + (1 + x^2) (d^2y)/(dx^2)]` = n ny ......(From (i))
`(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` = n2y