Advertisements
Advertisements
Question
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
Options
0.00
1.00
2.00
3.00
MCQ
Fill in the Blanks
Solution
If y = `x^((sinx)^(x^((sinx)^(x^...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to 1.00.
Explanation:
y = `x^((sinx)^y)`
⇒ ℓny = (sinx)yℓnx
⇒ ℓny = `e^(yℓn(sinx)).ℓnx`
⇒ `1/y.(dy)/(dx) = 1/xe^(yℓn(sinx)) + ℓnx.e^(yℓn(sinx)) xx (y. 1/sinx . cosx + y^'ℓn(sinx))`
⇒ `1/y (dy)/(dx) = 1/(π/2) + 0`
⇒ `(dy)/(dx)` = 1
Since at x = `π/2`, y = `π/2`
shaalaa.com
Is there an error in this question or solution?