Advertisements
Advertisements
Question
If y = `[x + sqrt(x^2 - 1)]^15 + [x - sqrt(x^2 - 1)]^15`, then `(x^2 - 1)(d^2y)/(dx^2) + x(dy)/(dx)` is equal to ______.
Options
12 y
224 y2
225 y2
225 y
Solution
If y = `[x + sqrt(x^2 - 1)]^15 + [x - sqrt(x^2 - 1)]^15`, then `(x^2 - 1)(d^2y)/(dx^2) + x(dy)/(dx)` is equal to 225 y.
Explanation:
y = `{x + sqrt(x^2 - 1)}^15 + {x - sqrt(x^2 - 1)}^15`
Differentiate w.r.t. 'x'
`(dy)/(dx) = 15(x + sqrt(x^2 - 1))^14 [1 + x/sqrt(x^2 - 1)] + 15(x - sqrt(x^2 - 1))^14(1 - x/sqrt(x^2 - 1))`
`\implies (dy)/(dx) = 15/sqrt(x^2 - 1).y` ...(i)
`\implies sqrt(x^2 - 1). (dy)/(dx)` = 15 y
Again differentiating both sides w.r.t. x
`x/sqrt(x^2 - 1) . (dy)/(dx) + sqrt(x^2 - 1) (d^2y)/(dx^2) = 15(dy)/(dx)`
`\implies x(dy)/(dx) + (x^2 - 1)(d^2y)/(dx^2)`
= `15sqrt(x^2 - 1). 15/sqrt(x^2 - 1) .y`
= 255 y