Advertisements
Advertisements
Question
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Sum
Solution
Given, y = `(x + sqrt(x^2 - 1))^m` ...(1)
Differentiating w.r.t. x,
`dy/dx = m(x + sqrt(x^2 - 1))^(m - 1) d/dx(x + sqrt(x^2 - 1))`
∴ `dy/dx = m(x + sqrt(x^2 - 1))^(m - 1){1 + x/sqrt(x^2 - 1)}`
= `m(x + sqrt(x^2 - 1))^(m - 1){(sqrt(x^2 - 1) + x)/sqrt(x^2 - 1)}`
∴ `dy/dx = (my)/sqrt(x^2 - 1)` ...[From (1)]
∴ `sqrt(x^2 - 1) dy/dx` = my
Squaring both sides,
`(x^2 - 1)(dy/dx)^2` = m2y2
Again differentiating w.r.t. x,
`(x^2 - 1)(2dy)/dx*(d^2y)/(dx^2) + (dy/dx)^2(2x) = 2m^2y dy/dx`
Dividing both sides by `(2dy)/dx`
`(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
shaalaa.com
Is there an error in this question or solution?