Advertisements
Advertisements
Question
If y = `x^3 + 1/(x^3 + 1/(x^3 + 1/(x^3 + .....oo)`, ten `("d"y)/("d"x)` = ______.
Options
`(3x^2y)/(2y - x^3)`
`(x^3y)/(y + x^3)`
`(x^3y)/(y - x^3)`
`(3x^2y)/(2 + x^3/y)`
MCQ
Fill in the Blanks
Solution
If y = `x^3 + 1/(x^3 + 1/(x^3 + 1/(x^3 + .....oo)`, ten `("d"y)/("d"x)` = `(3x^2y)/(2y - x^3)`.
Explanation:
y = `x^3 + 1/y`
if y = f(x) + `1/y`, tthen `("d"y)/("d"x) = (y"f'"(x))/(2y - "f"(x))`
∴ `("d"y)/("d"x) = (3x^2y)/(2y - x^3)`
shaalaa.com
Higher Order Derivatives
Is there an error in this question or solution?