Advertisements
Advertisements
Question
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.
Options
8
`1/2`
`-15/4`
`1/8`
Solution
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to `underlinebb(1/8)`.
Explanation:
Given differential equation is `(dy)/(dx) + 2ytanx = sinx` ...(i)
Solution of this differential equation will be
y(I.F) = `intsinx(I.F)dx` ...(ii)
I.F = `e^(int2tanxdx)`
I.F = `e^(2inttanxdx)`
∵ `inttanxdx` = In (secx) + c
I.F = `e^(2In secx)`
I.F = `e^(In sec^2x)`
I.F = sec2x ...(iii)
Now using equation (ii) and (iii)
y(sec2x) = `int(sinx)(sec^2x)dx`
⇒ y(sec2x) = `int(sinx/cosx)(secx)dx`
⇒ y(sec2x) = `int(tanxsecx)dx`
⇒ y(sec2x) = secx + C ...(iv)
Given that `y(π/3)` = 0 i.e., when x = `π/3`, y = 0
⇒ `(0)(sec^2 π/3) = sec(π/3) + C`
⇒ C = `-sec π/3`
⇒ C = –2 ...(v)
Using equation (iv) and (v)
y(sec2x) = secx – 2
⇒ y = `(secx - 2)/(sec^2x)`
⇒ y = `secx/(sec^2x) - 2/(sec^2x)`
⇒ y = `1/secx - 2/(sec^2x)`
⇒ y = cosx – 2cos2x
⇒ y = `-2{cos^2x - 1/2 cosx}`
⇒ y = `-2{cos^2x - 1/2 cosx + (1/4)^2 - (1/4)^2}`
⇒ y = `1/8 - 2(cosx - 1/2)^2`
For ymax put cosx = `1/2`⇒ ymax = `1/8`