Advertisements
Advertisements
Question
If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______.
Options
1
π
3π
4
MCQ
Fill in the Blanks
Solution
If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to 4.
Explanation:
z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`
= `π/4(1 + i)^4[(1 + π + π + 1)/((sqrt(π) + i)(1 + sqrt(π)i))]`
= `π/4(1 + i)^4 2/i`
= `π/4(2i)^2 2/i`
= 2πi
∴ `(|z|/("amp"^((z)))) = (2π)/(π/4)` = 4
shaalaa.com
Argand Diagram Or Complex Plane
Is there an error in this question or solution?