English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

If z = x + iy is a complex number such that Im i(2z+1iz+1) = 0, show that the locus of z is 2x2 + 2y2 + x – 2y = 0 - Mathematics

Advertisements
Advertisements

Question

If z = x + iy is a complex number such that Im `((2z + 1)/("i"z + 1))` = 0, show that the locus of z is 2x2 + 2y2 + x – 2y = 0

Sum

Solution

Let z = x + iy

Simplyfying `((2z + 1)/("i"z + 1)) = (2(x + "i"y) + 1)/("i"(x + "i"y) + 1)`

= `((2x + 1) + 2"i"y)/((1 - y) + "i"x) xx ((1 - y) - "i"x)/((1 - y) - "i"x)`

= `((2x + 1)(1 - y) - "i"x (2x + 1) + 2"i"y(1 - y) + 2xy)/((1 - y)^2 + x^2`

= `([(2x + 1)(1 - y) + 2xy])/((1 - y)^2 + x^2) + "i" ([2y(1 - y) - x(2x + 1)])/((1 - y)^2 + x^2)`

Given Im `((2z + 1)/("i"z + 1))` = 0

`(2y(1 - y) - x(2x + 1))/((1 - y)^2 + x^2)` = 0

2y(1 – y) – x(2x + 1) = 0

⇒ 2y – 2y2 – 2x2 – x = 0

∴ The locus is 2x2 + 2y2 – 2y + x = 0

Hence proved

shaalaa.com
Geometry and Locus of Complex Numbers
  Is there an error in this question or solution?
Chapter 2: Complex Numbers - Exercise 2.6 [Page 75]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 2 Complex Numbers
Exercise 2.6 | Q 2 | Page 75
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×