English

If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then -

Advertisements
Advertisements

Question

If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then

Options

  • Z1 = Z2

  • `Z_1 = barZ_2`

  • Z1Z2 = 1

  • None of these

MCQ

Solution

`Z_1 = barZ_2`

Explanation:

Let `z_1 = x_1 + iy_1` and `z_2 = x_2 + iy_2`

We have given that, `|z_1| = |z_2|`

`sqrt(x_1^2 + y_1^2) = sqrt(x_2^2 + y_2^2)`

`x_1^2 + y_1^2 = x_2^2 + y_2^2`

`x_1^2[1 + (y_1/x_1)^2] = x_2^2 [1 + (y_2/x_2)^2]`  ......(i)

⇒ Also given that, arg (z1) + arg (z2) = 0

`tan^-1 (y_1/x_1) + tan^-1 (y_2/x_2)` = 0

`tan^-1 (y_1/x_1) = - tan^-1 (y_2/x_2)`

`tan^-1 (y_1/x_1) = tan^-1 (y_2/x_2)`

∴ `y_1/x_1 = (-y_2)/(x_2)`  ......(ii)

`y_1^2/x_1^2 = y_2^2/x_2^2 ⇒ (y_1/x_1)^2 = (y_2/x_2)^2`  ......(iii)

From equation (iii) and equation (i), we get

`x_1^2 [1 + (y_1/x_1)^2] = x_2^2 [1 + (y_1/x_1)^2]`

∴ `x_1^2 = x_2^2 ⇒ x_1 = x_2`  ......(iv)

From equation (ii) and equation (iv), we get

∴ `y_1 = - y_2`  ......(v)

By using equation (iv) and equation (v), It can be concluded that `Z_1 = barZ_2` (or) `Z_2 = barZ_1`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×