Advertisements
Advertisements
Question
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
Options
Z1 = Z2
`Z_1 = barZ_2`
Z1Z2 = 1
None of these
Solution
`Z_1 = barZ_2`
Explanation:
Let `z_1 = x_1 + iy_1` and `z_2 = x_2 + iy_2`
We have given that, `|z_1| = |z_2|`
`sqrt(x_1^2 + y_1^2) = sqrt(x_2^2 + y_2^2)`
`x_1^2 + y_1^2 = x_2^2 + y_2^2`
`x_1^2[1 + (y_1/x_1)^2] = x_2^2 [1 + (y_2/x_2)^2]` ......(i)
⇒ Also given that, arg (z1) + arg (z2) = 0
`tan^-1 (y_1/x_1) + tan^-1 (y_2/x_2)` = 0
`tan^-1 (y_1/x_1) = - tan^-1 (y_2/x_2)`
`tan^-1 (y_1/x_1) = tan^-1 (y_2/x_2)`
∴ `y_1/x_1 = (-y_2)/(x_2)` ......(ii)
`y_1^2/x_1^2 = y_2^2/x_2^2 ⇒ (y_1/x_1)^2 = (y_2/x_2)^2` ......(iii)
From equation (iii) and equation (i), we get
`x_1^2 [1 + (y_1/x_1)^2] = x_2^2 [1 + (y_1/x_1)^2]`
∴ `x_1^2 = x_2^2 ⇒ x_1 = x_2` ......(iv)
From equation (ii) and equation (iv), we get
∴ `y_1 = - y_2` ......(v)
By using equation (iv) and equation (v), It can be concluded that `Z_1 = barZ_2` (or) `Z_2 = barZ_1`