English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

If z1, z2 and z3 are three complex numbers such that |z1| = 1, |z2| = 2, |z3| = 3 and |z1 + z2 + z3| = 1, show that |9z1z2 + 4z1z3 + z2z3| = 6 - Mathematics

Advertisements
Advertisements

Question

If z1, z2 and z3 are three complex numbers such that |z1| = 1, |z2| = 2, |z3| = 3 and |z1 + z2 + z3| = 1, show that |9z1z+ 4z1z3 + z2z3| = 6

Sum

Solution

|z1| = 1, |z1| = 2, |z3| = 3

|z1 + z2 + z3| = 1

Now |9z1 z2 + 4z1 z3 + z2 z3|

= `|"z"_1| |"z"_2| |"z"_3| |9/z_3 + 4/z_2 + 1/z_1|`

= `(1)(2)(3) |(9bar(z)_3)/|z_3|^2 + (4bar(z)_2)/|z_2|^2 + (bar(z)_1)/|z_1|^2|`

= `6|(9bar(z)_3)/(3)^2 + (4bar(z)_2)/(2)^2 + (bar(z)_1)/(1)^2|`

= `6|bar(z)_3 + bar(z)_2 + bar(z)_1|`

= `6|bar(z_3 + z_2 + z_1)|`

= `6|z_1 + z_2 + z_3|`

= 6(1)

= 6

Hence proved.

shaalaa.com
Modulus of a Complex Number
  Is there an error in this question or solution?
Chapter 2: Complex Numbers - Exercise 2.5 [Page 72]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 2 Complex Numbers
Exercise 2.5 | Q 7 | Page 72
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×