Advertisements
Advertisements
Question
If `"z"^2/(("z" - 1))` is always real, then z, can lie on ______.
Options
real axis
a parabola
imaginary axis
pair of lines
MCQ
Fill in the Blanks
Solution
If `z^2/((z - 1))` is always real, then z, can lie on real axis.
Explanation:
∵ `(x + "iy")^2/((x - 1 + "iy")) xx (((x - 1) - "iy"))/(((x - 1) - "iy"))` = `((x^2 - "y"^2 + 2"i"x"y")[(x - 1) - "iy"])/((x - 1)^2 + "y"^2)`
Always real so
2xy(x – 1) – y(x2 – y2) = 0
⇒ y(2x2 – 2x – x2 + y2) = 0
⇒ y(x2 – 2x + y2)= 0
⇒ y = 0 real axis
shaalaa.com
Pair of Straight Lines
Is there an error in this question or solution?