English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

In a competitive examination, one mark is awarded for every correct answer while 14 mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How - Mathematics

Advertisements
Advertisements

Question

In a competitive examination, one mark is awarded for every correct answer while `1/4` mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly? (Use Cramer’s rule to solve the problem).

Sum

Solution

No. of Questions answered = 100

Let the No. of questions answered correctly be x

and the No. of questions answered wrongly be y

Here, x + y = 100 and `x - 1/4 y` = 80

(i.e) x + y = 100 and 4x – y = 320

Δ = `|(1, 1),(1, -1/4)| = - 1/4 - 1 = (-5)/4 ≠ 0`

Δx = `|(100, 1),(80, -1/4)|` = – 25 – 80 = – 105

Δy = `|(1, 100),(1, 80)|` = 80 – 100 = – 20

x = `Delta_x/Delta = (- 105)/((- 5)/4)` = 21 × 4 = 84

y = `Delta_y/Delta = (- 20)/((- 5)/4)` = 4 × 4 = 16

Correct questions = 84

Wrong questions = 16.

shaalaa.com
Applications of Matrices: Solving System of Linear Equations
  Is there an error in this question or solution?
Chapter 1: Applications of Matrices and Determinants - Exercise 1.4 [Page 35]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 1 Applications of Matrices and Determinants
Exercise 1.4 | Q 2 | Page 35

RELATED QUESTIONS

Solve the following system of linear equations by matrix inversion method:

2x + 5y = – 2, x + 2y = – 3


Solve the following system of linear equations by matrix inversion method:

2x + 3y – z = 9, x + y + z = 9, 3x – y – z = – 1


If A = `[(-5, 1, 3),(7, 1, -5),(1, -1, 1)]` and B = `[(1, 1, 2),(3, 2, 1),(2, 1, 3)]`, Find the products AB and BA and hence solve the system of equations x + y + 2z = 1, 3x + 2y + z = 7, 2x + y + 3z = 2


Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method


Solve the following systems of linear equations by Cramer’s rule:

5x – 2y + 16 = 0, x + 3y – 7 = 0


Solve the following systems of linear equations by Cramer’s rule:

`3/x - 4/y - 2/z - 1` = 0, `1/x + 2/y + 1/z - 2` = 0, `2/x - 5/y - 4/z + 1` = 0


A chemist has one solution which is 50% acid and another solution which is 25% acid. How much each should be mixed to make 10 litres of a 40% acid solution? (Use Cramer’s rule to solve the problem).


A fish tank can be filled in 10 minutes using both pumps A and B simultaneously. However, pump B can pump water in or out at the same rate. If pump B is inadvertently run in reverse, then the tank will be filled in 30 minutes. How long would it take each pump to fill the tank by itself? (Use Cramer’s rule to solve the problem)


Solve the following systems of linear equations by Gaussian elimination method:

2x – 2y + 3z = 2, x + 2y – z = 3, 3x – y + 2z = 1


If ax² + bx + c is divided by x + 3, x – 5, and x – 1, the remainders are 21, 61 and 9 respectively. Find a, b and c. (Use Gaussian elimination method.)


An amount of ₹ 65,000 is invested in three bonds at the rates of 6%, 8% and 9% per annum respectively. The total annual income is ₹ 4,800. The income from the third bond is ₹ 600 more than that from the second bond. Determine the price of each bond. (Use Gaussian elimination method.)


A boy is walking along the path y = ax2 + bx + c through the points (– 6, 8), (– 2, – 12), and (3, 8). He wants to meet his friend at P(7, 60). Will he meet his friend? (Use Gaussian elimination method.)


Choose the correct alternative:

If A = `[(3/5, 4/5),(x, 3/5)]` and AT = A–1, then the value of x is


Choose the correct alternative:

If A = `[(costheta, sintheta),(-sintheta, costheta)]` and A(adj A) = `[("k", 0),(0, "k")]`, then k =


Choose the correct alternative:

If ρ(A) ρ([A|B]), then the system AX = B of linear equations is


Choose the correct alternative:

If 0 ≤ θ ≤ π and the system of equations x + (sin θ)y – (cos θ)z = 0, (cos θ) x – y + z = 0, (sin θ) x + y + z = 0 has a non-trivial solution then θ is


Choose the correct alternative:

Let A = `[(2, -1, 1),(-1, 2, -1),(1, -1, 2)]` and 4B = `[(3, 1, -1),(1, 3, x),(-1, 1, 3)]`. If B is the inverse of A, then the value of x is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×