Advertisements
Advertisements
Question
In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is ______.
Options
sin (A + B)
sin (A – B)
cos (A + B)
`sin((A - B)/2)`
MCQ
Fill in the Blanks
Solution
In a triangle ABC, ∠C = 90°, then `(a^2 - b^2)/(a^2 + b^2)` is sin (A – B).
Explanation:
A + B = 180° – C = 90°
a = 2R sin A, b = 2R sin B, c = 2R sin C
∴ `(a^2 - b^2)/(a^2 + b^2) = (sin^2A - sin^2B)/(sin^2A + sin^2B)`
= `(sin(A + B)sin(A - B))/(sin^2A + sin^2(90^circ - A))` ...[∵ A + B = 90°]
= `(sin 90^circ sin(A - B))/(sin^2A + cos^2A)`
= sin (A – B)
shaalaa.com
Is there an error in this question or solution?