Advertisements
Advertisements
Question
In ΔABC, a = 3, b = 1, cos(A – B) = `2/9`, find c.
Sum
Solution
We have
`tan((A - B)/2) = sqrt((1 - cos(A - B))/(1 + cos(A - B))`
= `sqrt((1 - 2/3)/(1 + 2/3))`
= `1/sqrt(5)`
Also, `tan((A - B)/2) = (a - b)/(a + b)*cot C/2` ...(Napier’s analogy)
∴ `1/sqrt(5) = (3 - 1)/(3 + 2)*cot C/2`,
∴ `cot C/2 = 2/sqrt(5)`
`\implies tan C/2 = sqrt(5)/2`
But cos C = `(1 - tan^2 C/2)/(1 + tan^2 C/2)`
= `(1 - 5/4)/(1 + 5/4)`
= `-1/9`
∴ `(a^2 + b^2 - c^2)/(2ab) = -1/9` ...(Cosine rule)
∴ `((3)^2 + (1)^2 - c^2)/(2(3)(1)) = -1/9`
∴ –c2 = `-32/3`
∴ c2 = `32/3`,
`\implies` c = `(4sqrt(2))/sqrt(3)`
shaalaa.com
Is there an error in this question or solution?