English

In Δ ABC; with usual notations, bBcCB - CbsinB-csinCsin(B - C) = _______. -

Advertisements
Advertisements

Question

In Δ ABC; with usual notations, `("b" sin "B" - "c" sin "C")/(sin ("B - C"))` = _______.

Options

  • b

  • a + b + c

  • a

  • c

MCQ
Fill in the Blanks

Solution

In Δ ABC; with usual notations, `("b" sin "B" - "c" sin "C")/(sin ("B - C"))` = a.

Explanation:

We have, `("b" sin "B" - "c" sin "C")/(sin ("B - C"))`

`= ("k" sin "B" sin "B" - "k" sin "C" sin "C")/(sin ("B - C"))`    ...(Using sine rule)

`= ("k"[sin^2 "B" - sin^2 "C"])/(sin ("B - C"))`

`= ("k" sin("B + C") sin ("B - C"))/(sin ("B - C"))`

= k sin (B + C)

= k sin (180° - A)

= k sin A = a

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×