Advertisements
Advertisements
Question
In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is _______.
Options
Acute angled triangle
Equilateral triangle
Obtuse angled triangle
Right angled triangle
MCQ
Fill in the Blanks
Solution
In Δ ABC; with usual notations, if cos A = `(sin "B")/(sin "C")`, then the triangle is right angled triangle.
Explanation:
Use sine rule,
`(sin A)/"a" = (sin B)/"b" = (sin "C")/"c"`
We have,
cos A = `(sin "B")/(sin "C")`
`=> ("b"^2 + "c"^2 - "a"^2)/(2 "bc") = "b"/"c" ...(because (sin "A")/"a" = (sin "B")/"b" = (sin "C")/"c" = "k")`
⇒ b2 + c2 - a2 = 2b2
⇒ c2 - a2 = b2
⇒ c2 = a2 + b2
⇒ Δ ABC right angled triangle at ∠C.
shaalaa.com
Is there an error in this question or solution?