Advertisements
Advertisements
Question
In an A.P. if Sn = 4n2 − n, then
- find the first term and common difference.
- write the A.P.
- which term of the A.P. is 107?
Sum
Solution
(i)
S = 4n2 − n
We know
a1 = S1 ⇒ 4(1)2 − (1) = 3
⇒ a2 = S2 − S1
= 4(2)2 − (2) − {4(1)2 − 1}
= 4 × 4 − 2 − {4 − 1}
= 14 − 3
a2 = 11
d = a2 − a1
d = 11 − 3
d = 8
(ii)
a1, a + d, a + 2d
3, 3 + 8, 3 + 2 × 8
AP = 3, 11, 19 .....
(iii)
a = 3, d = 8, an = 107
an = a + (n − 1)d
⇒ 107 = 3 + (n − 1)8
⇒ `104/8 = n − 1`
⇒ 13 + 1 = n
⇒ n = 14
shaalaa.com
Is there an error in this question or solution?