Advertisements
Advertisements
Question
In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is ______
Options
a2 - b2
`1/(a^2 - b^2)`
`1/a^2 - 1/b^2`
a2 + b2
MCQ
Fill in the Blanks
Solution
In any triangle ABC, the simplified form of `(cos2A)/a^2 - (cos2B)/b^2` is `underline(1/a^2 - 1/b^2)`.
Explanation:
`(cos2A)/a^2 - (cos2B)/b^2`
= `(1 - 2sin^2A)/a^2 - (1 - 2sin^2B)/b^2`
= `1/a^2 - 1/b^2 - (2sin^2A)/a^2 + (2sin^2B)/b^2`
= `1/a^2 - 1/b^2 - 2((sin^2A)/a^2 - (sin^2B)/b^2)`
= `1/a^2 - 1/b^2` .......`["By sine rule", a/(sinA) = b/(sinB)]`
shaalaa.com
Is there an error in this question or solution?